UserGuide to the VBA program SRDrepV6T4_CrossValV8D.xIsm

A. General notations

The SRDrepV6T4CrossVaIV8D.xIsm file henceforth we call SRDrepCrV or simply program, the input Data Matrix of the program we denote by DM, the Number of Rows, Number of Columns, and number of precise digits in $\mathbf{D M}$ we denote by $\boldsymbol{n R}, \boldsymbol{n C}$ and $\boldsymbol{n d i g}$, respectively.
The program consists of 10 Excel WorkSheets: the StartSheet and the pD2, pD3,..., pD8, pD9_15, pDGr15 probability-distribution (p-Dist) Sheets, $\mathbf{8}$ ModuleSheets and one UserForm. Modules and the UserForm are protected by a password. The p-Dist Sheets contain the SRD probability distribution tables or functions, actually on $p \mathbf{D 2}, \ldots, p D 8$ the discrete distribution tables in cases $n R=2,3, \ldots, 8$ for $\boldsymbol{n d i g}=\mathbf{2}$ and $\boldsymbol{n d i g = 3}$, on pD9_15 and pDGr15 the fitted p-Dist functions. Sheet pD9_15 contains the parameters of Tangent Hyperbolic (Tanh) approximation for $\boldsymbol{n R}=\mathbf{9}, \mathbf{1 0}, \ldots, 15$, and $\mathbf{p D G r 1 5}$ contains the parameters of Gaussian (Normal) approximation for $\boldsymbol{n R}>\mathbf{1 5}$. Tanh and Normal approximation are there available for $\boldsymbol{n d i g}=\mathbf{2}$.
The StartSheet contains a short description about the inputs, „How to run the program", and results.
The modules contain (altogether) 26 subroutines and 2 functions (this last two for the fitted - Tanh and Normal - distribution functions). The only UserForm serves for choosing the rPd value. The value of rPd gives for the crossvalidation the Rate of Parts to Delete. For example, if $\boldsymbol{n R}=\mathbf{1 6}$ and $\mathbf{r P d = 7}$, then $n R \backslash r P d=16 \backslash 7=2$. It means, that each of the crossvalidation minors will contain 14 rows from the input $D M$.

B. Main steps of using SRDrepCrV

The figures, helping to understand the main steps, are based on an input file used in food sensory testing
(source: [1] L. Sipos, et al.: Journal of Chemometrics, 25 (2011) 275-286.)
1.) Prepare an input $\boldsymbol{X L S X}$ file containing an only Excel WorkSheet, where the cells B1 and F1 contain the number of Rows/Columns ($n R / n C$) of $D M$. The third row contains the names of the Variable vectors and in the $(\mathbf{n C}+2)^{\text {th }}$ column the type of Reference Column ($R C$): Read, min, Max or Average - in the last 3 cases the coordinates of $\boldsymbol{R C}$ will be evaluated by the program. The first column (starting from $4^{\text {th }}$ row) contains the names of objects - in the example they are abbreviations of sensory properties from [1]. In cells $\mathbf{A 2}$ and $\mathbf{F 2}$ are given an (optional) name of $\boldsymbol{D M}$ and the (optional) value of ndig. If the user doesn't give the value of ndig, or the value doesn't matches for the available p-Dist table or function, then the program automatically uses ndig=2, and gives a warning in cells E2, coloring it red and writing into E2 „changed ndig".

4	A	B	C	D	E	F	G	H
1	$\mathrm{nR}=16$				$\mathrm{nC}=6$			
2	CoExR				ndig= 2			
3		Co1	Co2	Co3	Ex1	Ex2	Ex3	Read
4	YC	51	63	48	32	52	44	45
5	CT	67	68	69	73	75	65	60
6	S	50	73	49	60	59	57	60
7	U	32	56	43	35	24	44	35
8	CS	32	32	43	41	52	46	50
9	SwS	44	42	73	39	32	25	35
10	Scl	42	26	40	51	51	39	45
11	F	67	50	63	64	63	47	60
12	T	43	50	80	58	62	58	60
13	J	45	88	76	55	65	53	60
14	S	20	50	54	64	61	56	60
15	SaF	33	23	7	11	8	17	10
16	SwF	23	65	60	57	48	63	50
17	BoF	50	44	40	47	46	52	50
18	FI	36	44	58	62	60	63	60
19	Plu	20	61	82	60	61	60	60

Table 1: Input Data
2.) Open the SRDrepCrV program, click on the START button, and the program shows the usual GetOpenFile window, where you have to choose your input file. The program opens the file, and corresponding to $\boldsymbol{n R}$, either (case-1: $\boldsymbol{n R}<\mathbf{1 4}$) processes your DM via $\mathbf{L O O}$ crossvalidation, or (case-2: $n R>13$) shows a UserForm (named StartForm, see Fig.1), where you have to choose an rPd value.
3.) From the only input WorkSheet will be made the new Sheets by deleting certain rows of the DM, and named the new Sheets Gr1x, $\mathbf{G r 2 x}$, etc, where x is empty in case of LOO, and $\mathrm{x}=\mathbf{A}$ or $\mathrm{x}=\mathbf{B}$ else. In case of LOO the number of new Sheets is $\boldsymbol{n R}$, else it is $\boldsymbol{n G r A}+\boldsymbol{n G r B}$ where $n G r A$ and $n G r B$ represent the number of Sheets containing a minor resulted from sequentially (case A) or randomly (case B) deleted rPd size part of $\boldsymbol{D M}$. The value of $\boldsymbol{n G r A}$ is given by $\boldsymbol{n R}$ and $r \boldsymbol{r P d}$, the sum of $\boldsymbol{n G r A}$ and $\boldsymbol{n G r B}$ equals to the first odd $>\mathbf{5 0}$ at a random-cluster-end.

Fig.1: StartForm
4.) The next step of SRDrepCrV is the wellknown SRDrep-CRRN evaluation (including SRD-Tables, CRRNfigures, and if available, probability distributions for the original $D M^{\prime} \boldsymbol{s} \boldsymbol{R C}$ and for each of the minors' $R C$.) Here we show only the figures, because they represent clearly the most important data of SRD-Tables, as well. The first CRRN-figure (Fig.2) is the result of the DM above with the given RC, containing four ties with values $45,60,35$, and 50 , having the lengths $2,8,2$ and 3 , respectively. Because $n \boldsymbol{R}>15$, for the distribution function Normal approximation is necessary.
The next figure (Fig.3) is the result of a minor where the (sequentially) deleted 2 rows of DM were the rows of the objects named \mathbf{T} and J. Because in this case $\boldsymbol{n R}<=\mathbf{1 5}$, although ClassTH=2, the parameters of the corresponding Tanh approximation could be found on the p-Dist Sheet named pD9_15.
About the SRDrep\%, \boldsymbol{d}, and ClassTH parameters you have information in [2].
[2] Kollár-Hunek K., Héberger K.: Classification of SRD-with-Ties probability distributions, Proceeding of Conferentia Chemometrica, Budapest, 13-16 Sept, 2015, P21

Fig.2: CRRN figure of the input DM

4	A	B	C	D	E	F	G	H
1	n row=	16			n col=	6		
2	CoEx							
3		C01	Co2	Co3	Ex1	Ex2	Ex3	Read
4	YC	51	63	48	32	52	44	45
5	CT	67	68	69	73	75	65	60
6	S	50	73	49	60	59	57	60
7	U	32	56	43	35	24	44	60
8	CS	32	32	43	41	52	46	60
9	SwS	44	42	73	39	32	25	60
10	Scl	42	26	40	51	51	39	45
11	F	67	50	63	64	63	47	60
12	T	43	50	80	58	62	58	60
13	J	45	88	76	55	65	53	60
14	S	20	50	54	64	61	56	60
15	SaF	33	23	7	11	8	17	10
16	SwF	23	65	60	57	48	63	60
17	BoF	50	44	40	47	46	52	60
18	FI	36	44	58	62	60	63	60
19	Plu	20	61	82	60	61	60	60

Table 2: The original DM with new RC

Fig.3: CRRN figure of a minor. Deleted rows of DM are the rows of objects \boldsymbol{T} and \mathbf{J}

CRRN results ($\mathrm{n}=16$; SRD\%rep=47,8; $\mathrm{d}=14,18$; ClassTH=4 ; p-dist is not available)

Fig.4: CRRN-figure without p-distribution
This CRRN-figure resulted from the same DM as the first one (Fig.2), but now the $\boldsymbol{R C}$ - as one can see in Tab. 2 - contains a very long tie, so ClassTH=4, that's why p-Dist is missing

Let us now go back to the first input file, you have seen in Table 1. The file contains food profile analysis data, where we compared the efficiency of consumers (untrained) and experts (trained) assessors on $\boldsymbol{n R}=\mathbf{1 6}$ objects (sensory properties of corn). That's why we named the input Sheet CoEx_n16.
The result file of this input contains the following Sheets: the original input Sheet CoEx_n16, its SRD-CRRN result Sheet: Results_CoEx_n16, thereafter the A-type result Sheets renamed from Gr1_A, ...,Gr8_A: CrV_Gr1_A, ...,CrV_Gr8_A, containing each of them an A-type (deleting the rPd part of $\boldsymbol{D M}$ sequentially) minor and its SRDrep_CRRN results. The next group of CrV Sheets consists of the Sheets renamed from Gr9_B,...,Gr55_B: CrV_Gr9_B, ...,CrV_Gr55_B, containing each of them a B-type (deleting the rPd part - in this example 2 rows - of $\boldsymbol{D M}$ randomly) minor and its SRDrep_CRRN results. The last two (CV_Tab and CV_SRDnor_Histo) Sheets contain „summarizing" tables and figures.

The program collects the SRD values of the Variable vectors and the SRDmax value of the corresponding $\boldsymbol{R C}$ from the CrV Sheets, and writes them into the CV_Tab Sheet (see on Tab. 3). Thereafter, using the SRDmax of the corresponding RC, calculates the SRDnor values (see on Tab. 4).

Multiple CV results of type 2-size ordered(A) and 2-size random(B) groups deleted								CV(AB) results given by SRDnor(=100*SRD/SRDmax)							
SRDmax	Group/Var	Co1	Co2	Co3	Ex1	Ex2	Ex3	SRDmax	Group/Var	Co1	Co2	Co3	Ex1	Ex2	Ex3
98	Gr1_A	59	40	39	21	19	27	98	Gr1_A	60.2	40.8	39.8	21.4	19.4	27.6
98	Gr2_A	66	41	37	23	22	25	98	Gr2_A	67.3	41.8	37.8	23.5	22.4	25.5
	***								***						
96	Gr8_A	54	44	38	22	20	24	96	Gr8_A	56.3	45.8	39.6	22.9	20.8	25.0
96	Gr9_B	56	53	31	22	22	30	96	Gr9_B	58.3	55.2	32.3	22.9	22.9	31.3
96	Gr10_B	62	41	39	24	24	28	96	Gr10_B	64.6	42.7	40.6	25.0	25.0	29.2
	***								***						
96	Gr54_B	60	55	44	24	23	31	96	Gr54_B	62.5	57.3	45.8	25.0	24.0	32.3
98	Gr55 B	60	47	30	23	22	27	98	Gr55_B	61.2	48.0	30.6	23.5	22.4	27.6
Table 3: SRD values of Variable vectors based on minors of DM								Table 4: SRDnor Values of Variable vectors based on minors of DM							

CV(A) results given by ordered SRDnor

OrdNum	Co1	Co2	Co3	Ex1	Ex2	Ex3
1	56.3	40.8	31.3	20.4	19.4	20.8
2	58.3	41.8	36.5	20.8	19.4	24.5
3	59.2	45.8	37.8	21.4	19.8	25.0
4	60.2	45.8	39.6	22.9	19.8	25.0
5	60.4	46.9	39.8	23.5	20.8	25.5
6	64.3	49.0	39.8	24.0	22.4	27.6
7	66.7	52.0	41.7	25.0	23.5	28.6
8	67.3	53.1	42.9	25.5	25.0	31.3

Min	56.3	40.8	31.3	20.4	19.4	20.8
Med	60.3	46.4	39.7	23.2	20.3	25.3
Max	67.3	53.1	42.9	25.5	25.0	31.3

Average 61.6	46.9	38.6	22.9	21.3	26.0	
StDe	3.8	4.1	3.4	1.8	2.0	2.9

StDev	3.8	4.1	3.4	1.8	2.0	2.9

Table 5: Ordered SRDnor values from the A-type CrV_Gr1_A,---, CrV_Gr8_A Sheets

Histogram CV(A)								
	Co1			Co 2			Co3	
SRDnor	freq	Cfreq	SRDnor	freq	Cfreq	SRDnor	freq	Cfreq
56.3	1	1	40.8	1	1	31.3	1	1
58.3	1	2	41.8	1	2	36.5	1	2
59.2	1	3	45.8	2	4	37.8	1	3
60.2	1	4	46.9	1	5	39.6	1	4
60.4	1	5	49.0	1	6	39.8	2	6
64.3	1	6	52.0	1	7	41.7	1	7
66.7	1	7	53.1	1	8	42.9	1	8
67.3	1	8						

In Tab. 3 and Tab. 4 the SRD or SRDnor values are ordered by the crossvalidation WorkSheets. The normalization of SRD values by the SRDmax value, belonging to the RC of the Sheet, allows the monotonic increasing ordering of SRDnor values. Tab. 5 shows these ordered values of the A-type part of Tab.4, completed by minimum, median, maximum, average and standard deviation, column by column.
Tab.6, evaluated from Tab.5, contains the frequencies and cumulative frequencies of the SRDnor data sets.
All of the Tables 3 to 6 are on Sheet CV_Tab. The last WorkSheet of the program file, named CV_SRDnor_Histo, consists of similar tables as Tab. 5 and Tab.6, but now for the whole data set of A-type and B-type minors' SRDnor values. The Histogram CV(AB) table's structure is the same, as Histogram CV(A)'s, but it contains the histogram-data of the whole (ordered) Tab 4, so one can easily imagine it.

	Ex1			Ex2			Ex3	
SRDnor	freq	Cfreq	SRDnor	freq	Cfreq	SRDnor	freq	Cfreq
20.4	1	1	19.4	2	2	20.8	1	1
20.8	1	2	19.8	2	4	24.5	1	2
21.4	1	3	20.8	1	5	25.0	2	4
22.9	1	4	22.4	1	6	25.5	1	5
23.5	1	5	23.5	1	7	27.6	1	6
24.0	1	6	25.0	1	8	28.6	1	7
25.0	1	7				31.3	1	8
25.5	1	8						

Fig.5. Box-Whiskers figures

C. About the bounds of input data

Among the input data $\boldsymbol{n} \boldsymbol{R}$ and $\boldsymbol{n C}$ are strictly bounded by the program, namely $\mathbf{4 \leq n R \leq 1 3 0 0}$ and $\mathbf{2 \leq n C \leq 3 0 0}$. Of course, with increasing $n R$ or $n C$ the running time of the program quickly increases. In case of increasing $n C$ one have to take in account the Excel-bound for the labels of data series, too. In case of equal $\boldsymbol{S R D}$ values the names of V -vectors on the CRRN figure are concatenated - and if the length of a concatenated name is >100, then the program writes on the figure only the cells of the whole name. Similarly, there is an Excel-bound for the number of data-series ($n D s$) on a figure. That's why for $n C>63$ (where $n D s=4^{*} n C \geq 256$), BWfigs are segmented by the program. For example, if $\boldsymbol{n C = 1 3 7}$ (and $\boldsymbol{n R}>13$) then the result file of crossvalidation contains $1+136 \backslash 60=3$ BWfig segments, containing the first and second ones 46 and the third one 45 V -vectors' BWfig.

